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A collection of new and already known correlation inequalities is found for a 
family of two-component hypercubic ~04 models, using techniques of duplicated 
variables, rotated correlation inequalities, and random walk representation. 
Among the interesting new inequalities are: rotated very special Dunlop- 
Newman inequality (qo2x; q~ (P~z)/>0, rotated Griffiths I inequality 
(q~l.~Oty; qg~z - ~o~)/> O, and anti-Lebowitz inequality •4 I l l l  ~ O. 

KEY WORDS: Correlation inequalities; hypercubic symmetry; rotated 
inequalities; random walk representation. 

1. I N T R O D U C T I O N  

In this pape r  we s tudy a class of t w o - c o m p o n e n t  9 4 models  with hyper-  
cubic in terna l  symmetry ,  i.e., in terac t ing  H a m i l t o n i a n  

4 2 2 H - -  ~ {,tl [(p, x + ~04x] + 22qOlxtP2x } (1.1) 
x 

This work  was mo t iva t ed  by the a t t emp t  to p rove  the conjecture,  suggested 
by p e r t u r b a t i o n  theory,  tha t  the physical  mass  for a pure  2 2 q~1~02 mode l  is 
str ictly posi t ive even as the bare  mass  tends to zero (i.e., there is no cri t ical  
point) .  (1) 

Let  L ~ Z d be a finite lattice. To each po in t  x e L is associa ted  a field 
q%=(~Olx, (#2x) where each c o m p o n e n t  is a real  r a n d o m  variable.  The  
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712 Soria 

collection of these random variables, ~={q~x :xeL} ,  is distributed 
according to the probability measure 

Z-1  exp [~ (q~, Jq~)] 

x[ Iexp(_21[~o4x+q~4x]  2 2 al .2 - -22@lxO2x---2-~lx \ x 

a2 b(P lxq)Zx) d~olx d~o2x (1.2) 
2 2x 

where Z is a normalization constant; J is an off-diagonal symmetric matrix 
with J~y=JZy>~O for all x, y E L ;  21>0;  2 2 ~ > - - 2 . ~ 1 ;  al,  a2, b e R ;  and 
when 21 = 0 then we require al,  a2 > 0. For future use we define R = 22/)~ 
[ - 2, oo ]. Note that R = 0, b = 0 represents two decoupled one-component 
q04 models; R = 2 ,  al =a2, b = 0  represents the isotropic I~l 4 models; and 
R = o% b = 0 represents the pure ~0~q) 2 models. 

The main goal of this paper is to prove correlation inequalities for 
models with joint probability measure (1.2) that would allow us to study 
the critical behavior. We use three techniques: duplicate variables 
(discussed in Section 2), the process of rotated correlation inequalities 
(discussed in Section 3) and the random walk representation (discussed in 
Sections 4-6). 

The new results of this work are summarized in Table I. In addition, 
we rederive by new methods some previously known inequalities. 

2. COMPONENTWISE AND (p, 0)-TYPE INEQUALITIES 

Here we classify correlation inequalities that use the technique of 
duplicate variables for two-component systems (according to the method of 
the proof) as follows: 

(i) Componentwise type (Fourier analysis on Z2). Bricmont- 
Monroe inequalities 2 (we state this result following ref. 2, without proof). 

(ii) (p,O) type [Fourier analysis on U(1)]. Dunlop-Newman 
inequalities (we sketch the proof for them). 

2 These inequalities are usually called Monroe inequalities, since he introduced and proved 
them. However, we call them by the name of Br icmont-Monroe  since we use the general 
version of Bricmont. 
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2.1. Componentwise Inequalities 

As is well known, Griffiths' second inequality, in contrast with 
Griffiths' first, has not been extended for general N. However, there are 
some positive results for N = 2 by Monroe (4) and for N = 3, 4 by Dunlop (5) 
and Kunz et al. (6) 

Theorem 2.1. (Bricmont-Monroe inequalities(2'4'7)). Let (q~)= 
{((P~x, (P2~); x e L} be a set of classical spins with partition function Z in a 
finite lattice L s Z J, 

z= f exp(  JL of+ Jgq f) 1-[ dYx((J)lx, q)2x) (2.1) 
\ K x~L  

where the a priori measure is given by 

( dvx( tP lx ,  (P2x)=exp -- s "1 er~2rra2P) (2.2) 

with arp >10 if both r and p are different from zero. J1 r ,  j2/> 0 for all multi- 
indices K and dvlx, dv2x even Borel measures for all x ~ L .  Then for any 
multi-indices A and B 

(BM-I) (qo~; (fir) ~>0 (2.3) 

(BM-II) ((P(; Of ) />  0 (2.4) 

(BM-III) (~0~; O f )  ~< 0 (2.5) 

Theorem 2.1 applies to hypercubic t0 4 models. The physical meaning of 
(2.3)-(2.5) is that the 1-components of the spins are positively correlated 
among themselves, but negatively correlated with the 2-components. One 
special case of (2.5) is the inequality u14122 <<. 0, a zeroth-order skeleton 
inequality for the mixed u4 function. 

A complementary result to BM inequalities is the following 
proposition. 

Proposition 2.2. (Reverse Bricmont-Monroe inequalities.) Make 
the same assumptions as in the previous theorem except that now arp ~< 0 if 
both r and p are different from zero, and the ferromagnetic interaction can 
be more general, namely 
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where JKK" ~ 0 for all multi-indices K, K'. Then for any multi-indices A 
and B 

(rBM-I) (~0~; q)f) >/-O (2.6) 

(rBM-II) (qgA; qof) ~> 0 (2.7) 

(rBM-III) ((o~; q)2 ~) ~> 0 (2.8) 

ProoL To see this, we consider the terms arp (492r~0~ p for r, p r 0 as the 
ferromagnetic part of a Hamiltonian of two one-component fields. Then we 
apply Griffiths' second inequality for one-component systems. | 

Remarks. 1. It is worth noting that the "r" in reversed or (as will be 
seen in the next section) the "rot" in rotated refers more to the type of 
measure than to the inequality. 

2. Proposition 2.2 applies to hypercubic 11~4 models with R ~< 0. 

2.2. (p, (9)-Type Inequalities 

Let ~ be the set of multinomials in {cos(m101 + .-" +mt0t); mi~Z} 
with nonnegative coefficients. Let fr be the set of multinomials in 

hj(rj): hi(r) >~ 0 nondecreasing on [0, oo) and O(e br~) for some b > O 
1 

with nonnegative coeff• Let ~ be the family of functions o n  ( 1 t 2 )  Icj  

which (in polar coordinates) are multinomial of functions from Y and f# 
with nonnegative coefficients. 

Example. In polar coordinates 

= - I ~ ( 3 + R )  p4+-~(al+a2)p2]--~ cos40 

1 
- -  - p 2 ( a  i - -  a 2 )  C O S  2 0  - -  2b sin 20 (2.9) 

4 

Since the first term of (2.9) is isotropic, it can be considered as part of the 
single spin measure. The remainder of the Hamiltonian is in -~ .  if R >~ 2, 
al ~ a2, and b = 0. 
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Theorem 2.3. (Dunlop-Newman inequalities~3)). Suppose { ~ : x e L }  
are random two-dimensional vectors whose joint probability is given by 

(x~v 1 2 S h x .  ) l~I x Z -1 exp Jxy~Olx@ly@Jxy~O2xq)2y-~ ~x dvx(~x) 
, x 

where the a priori measure is totally even such that 

(2.10) 

f exp(b 1~12) dvx(~) < oo Vb, x 

if h x = (hx, 0) with h x >~ 0, Ij2yl <~ J~y for x :/: y, and J~x <~ J~x for all x, y. 
Then for any F, G ~ & 

<F(~I,... , ~l)>/>0 (2.11) 

(F(~I  ..... q~t); G(~l ..... q~,)) ~>0 (2.12) 

Proof. (Sketch) The proof essentially consists in showing that the 
terms in the exponential on (2.10) belong to the class ~ and applying 
Proposition 3 of Ginibre. (8) | 

Remark. A characterization of the class of measures for which BM 
inequalities hold was developed in an unpublished paper by Ellis and 
Newman. (9) This work is very closely related to that given by Ellis and 
Newman in ref. 10 and Ellis et al. in ref. 11. 

3. R O T A T E D  I N E Q U A L I T I E S  

Here we discuss the process of rotating correlation inequalities for 
two-component hypercubic systems. Let us rotate the variables {~Pl, q~2} 
by 45 ~ . That is, let us define 

~o'1 = (~1 + < ) / , / 2 ;  ~ i  = (~o, - ~o2)/,,/~ 

Then 

=~(I+--~)[~p'14+~0~4]+2(3-~) ,2 ,2-a,+a2 ~o, ~0= +----T--  (e'~= + ~o; =) 

(a l  - a2) b 
-]- T (P'1(~2"~-2 ((p'12- (D~2) (3.1) 

n ,  , 2  , 2 7  a ' l  a~ , , , ~-,~'[-(p'14-~-q)~4-'~-1~ (~Ol (/92 J .-~-T~o'I2-I-T (~022-~-b q)l~O 2 (3.2) 
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where 

6 - R  
R '  -.~ 

1 + R / 2  

a I -+- a 2 
a ' ~ - - -  + b  

2 

(3.3) 

(3.4) 

(3.5) 

, a l  q - a  2 
a 2 b 

2 
(3.6) 

b' - 6 / 1  - a2 
2 

(3.7) 

R e m a r k s .  1. Not ice  tha t  a~ ~ a 2 iff b '  ~ 0, and  b = 0 iff a'x = a~. 

2. Not ice  tha t  (3.4) can equiva lent ly  be wri t ten  as 

1 1 1 
- -  - (3.8) 

R + 6  R ' + 6  4 

which makes  clear  the dua l i ty  between R and  R'. Some i m p o r t a n t  special 
cases are 

R =  - 2 - - +  R '  = oo 

R = 0 - - + R ' = 6  

R = 2 ~ R ' = 2  

R = 6 - - + R ' = 0  

R = oc --+ R '  = - 2  

which have the fol lowing in t e rp re t a t ion  for b = 0: 

R = - 2  (pure  q)~q~2 z model ,  45 ~ ro t a t ed )  

R = 0 (decoup led  o n e - c o m p o n e n t  ~o 4 mode l s )  

R = 2 and  a l  = a2 ( i so t ropic  I~] 4 mode l )  

R = 6 (decoup led  o n e - c o m p o n e n t  (70 4 models ,  45 ~ ro t a t ed )  

R = oo (pure  q0~ep 2 mode l )  

822/52/3-4-I3 
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Let us consider a very special case of Dunlop-Newman inequalities 
(Theorem 2.3 ): 

(vsD-N) (q~21x ; 2 2 (Ply + (D2y) ~ 0 (3.9) 

which is valid for R ~> 2, al ~ a2, and b = 0. These conditions can be easily 
seen by expressing the Hamiltonian H in polar coordinates and checking 
the conditions on the coefficients in the Hamiltonian in order that its non- 
isotropic part belongs to the class - 2 .  We have already done this in the 
example of Section 2. 

P r o p o s i t i o n  3.1. (Rotated very special Dunlop-Newman inequali- 
ties.) Consider a system with joint probability measure given by (1.2), 
where R e  [ - 2 ,  2], al =a2,  and b~<0. Then we have 

2 2 (~02~ + r + 2q~,~q~2~; r + q~2e) >~ 0 (3.10) 

In particular, if we further restrict to b = 0, we have 

(rotvsD-N) (q92; 2 2 (Ply'-}- (P2y> 9 0  (3.11) 

ProoL Let us translate (vsD-N) to the primed variables: 

\ 7/ 'k ,/5 t, ,/5 
that is, 

~@r?x ,2 , , . ,2 t2 + ~P2x + 2r r q) l.v + r 0 (3.12) 

Translating the conditions R/> 2, al ~< a2, and b = 0 to the primes, we get 
R'~< 2, b'~< 0, and a'l = a~, respectively. Dropping primes, we get (3.10). In 

l t the case b = 0  we have the symmetries q~l,--~ep~, r and 
~o~*-+ -r For this particular case (3.12) becomes 

t2 . ,2 r2 
((/?Ix,  (Ply + (P2y) -~" 0 

Finally dropping primes, we get (3.11). II 

Remark. It is amusing to note that in the symmetric case a~ = a 2 and 
b = 0 ,  the rotated (vsD-N) inequality (3.11) is identical to the original 
(vsD-N) inequality (3.9); what this proof shows is that it is valid for R, not 
just R~>2. Another way to prove vsD-N for R e [ - 2 , 0 ]  and b~<0 for 
models with Hamiltonian of type (3.1) is using reverse BM inequalities. 

Let us consider (qOlA; qo~-~o~z)~>0 and (~o~; 2~-~1z ~0 2 ^2 )>/0.  Notice 
that these inequalities are straightforward consequences of BM inequalities 
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for R e [0, oo ]. The interesting fact is that they can be obtained and exten- 
ded for all R in the case A = {x, y}, a~ =a2,  and b = 0  from the rotated 
Griffiths' first inequality. 

P r o p o s i t i o n  3.2. Consider a system with joint probability measure 
given by (1.2), where a~<~a2, b = 0 ,  and RE [--2, oo]. Then for all x, y, 
and z in L 

(~pl_~ q91~ - ~02x ~02y; ~O~z- ~02z) ~>0 (3.13) 

In particular, if we further restrict to al = a2, we have 

(rotG-I) ((plx~oly; ~o12z- ~o~z) ~> 0 (3.14) 

Proof. From Griffiths' first inequality, which holds for a system 
described by (1.2) with b~<0 and all al,  a2, and R, we have 

( ( ~ l x q ) 2 y ~ l z ~ 2 z )  ~ 0 

Now we translate to the primed variables and group the variables in the 
following way: 

, , t2 * t t2 ,2 
- - ~ O , z ) )  

, t t2 r2 1 , t2 ~o~) ) - - {~O~x ~ o , ~ ( ~ o ~ -  ~O'?z) ) ~> 0 (3.15 { ~Olx~O2y(~O lz -- ) 

Translating the condition b ~< 0 to the primes, we get a] ~< a~. If we impose 
the additional condition b' = 0, then the symmetries r --+ -~o], ~o~ ~ -~o~ 
imply that the last two terms of (3.15) vanish. Dropping primes, we get 
(3.13). If, finally, we further restrict to a] =a~,  the symmetry ~p] ~cp~ 
implies that the first two terms in (3.15) are equal. Dropping primes, we get 
(3.14). | 

One interesting result concerning rotated correlation inequalities is the 
Gaussian inequality for multicomponent rotators proved by Bricmont. ~12) 

One straightforward conclusion from Bricmont's derivation for u4 
functions is 

L/1111 ~ 0 whenever 0 ~< R ~< 6, b = 0, al = a2 (3.16) 

For this special case is easy to obtain (3.16) from the process of rotation. 
That is, let us rotate u~122 ~< 0 for R ~> 0 and their respective permutations 
by 45 ~ Then we get the rotated BM-III inequality 

U41111 1 / ' . 1 1 2 2  //41212 U 1 2 2 1 )  - - ~ u  4 + + ~<0 whenever R~<6, b = 0 ,  a l = a 2  

(3.17) 
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Combining with b/1122 ~ 0, R/> 0, and their permutations, we get 

u l l I I ~ 0  whenever b=0 ,  al=a2, 0~<R~<6 

which is precisely (3.16). 

(3.18) 

4. T H E  R A N D O M  W A L K  R E P R E S E N T A T I O N  

The random walk representation for two-component systems (with 
b = 0) can be deduced following a similar analysis to the one-component 
case discussed/13'14) There are minor differences; for example, now we have 
two local times (s and t) instead of one (t). We present here the conclusions 
of the random walk representation for two-component systems. 

The two-point function is given by 

( ( P  l x  (P lY ) =  Z JC~ dVeo(t)~(t 'O) ( 4 . 1 )  

oJ:x~ y 

where 

~( t ,  s) --- Z -1 f exp[l(9, J~)]  l~ gx(~~ + 2tx, q~  + 2sx) d~p~x &P2~ (4.2) 
x 

Z is the usual partition function and g~ is defined by ~(0,  0 )=  1. The 
four-point functions are given by: 

(i) Nonmixed fields 

(~D  l x l  Q) Ix2 (Plx3 ~Olx4 ) 

j,o f dv~o(t) ~(t ,  0)(~O,x3~O1~4),, o + two permutations (4.3) 2 
09: Xl ---~ x2 

and similarly with the one-component case (.),,s means normalized expec- 
tation with respect to the measure Z(t, s) given by the integral in (4.2). 

(ii) Mixed fields 

<q~lx, q)~x2q)2x3q)2x4) = ~ J" f dr.(t) ~e(t, O)(~O2x3~O2x.),.o (4.4a) 
oJ: x I ~ x 2 

= ~ J~fdv~,(s)~(O,s)(~otx~Plx2)o,s (4.4b) 
O9: X 3 ~ X 4 

The splitting-of-paths lemma is completely similar to the one-component 
systems. (15) 
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~O A (pA 5. M O N O T O N I C I T Y O F  ( ~ ) t . , A N D  ( a ) t . , lN  t, s 

We will see shortly (Section 6) that the analysis of the skeleton 
inequalities for u4 functions requires the knowledge of the monotonicity of 

A A (q) l ) t . ,  and in s (~o 2 ),,~ t, variables. In ref. 1, we develop an exhaustive 
study of the monotonicity for the two-component hypercubic ~o 4 models 
with b = 0 .  There we divided our analysis into two cases: (1) R~ [ - 2 ,  oo), 
and (2) R = oo (i.e., 21 = 0). 

5.1. RE [ - 2 ,  oo) 

For this case 

gx((O~,(o2)=exp{_2[(o41+(o4+R~o~qo2 ] a, ^2 a2 } -y o -To  (5.1t 
where 2 here denotes 21 . Then 

f ~1 ^2 ~2 -2 gx(cp 2 + 2t, 02 + 2s) = exp -2[~o 4 + ~o 4 + Rq~q~ 2] - ~ -  r - T  (D2 

-- (42t 2 + 42s 2 + 4tsR + al t + a2s)} (5.2) 

where ~1/2 = al/2 + 42t + 22sR and 0~2/2 = a2/2 + 42s + 22tR. In a similar 
way as in the one-component case, we notice that the effect of the t and s 
variables is to add space-dependent mass terms (42t+22sR) q) 2 and 
(42s + 22tR) ~o~ to the Hamiltonian. Now in order to find the monotonicity 
of the moments in t, s variables we study the sign of the derivatives of the 
moments with respect to t and s. That is, 

~?t---~ (~o{), . ,= - 4 2  (p{; ~o~z+~-q~2z (5.3) 
t, s 

c~ ( 2 R 2 \  
3t---~ ((0A)"s= --42 ~0(; (01z+~Cp2z/,," (5.4) 

( " 2  ) 0s----~ (cp{),, ,-- - 4 2  q~A;~(Otz+Cp~ z (5.5) 
t , s  

( R2 2\ 
- -  5 q~lz + q~2z/t,, (5.6) 

Remark. Notice that it is enough to study two cases [i.e., (5.3), 
(5.4)] and by analogy one determines the other two. 
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and 

Thus we concentrate our attention on finding the sign of 

(5.7) 

(eJ; ~G + ~G), , ,  (5.8) 

where x e R  and the expectation (')t,s is R dependent. To do this, we 
studied the signs of (5.7), (5.8) in the plane (R, x). Here we concentrate on 
those regions of the plane that intersect the case x = R/2, which is our main 
interest (the complete study can be found in ref. 1). 

S t u d y  of  (5.7) fo r  A = {x, y} 

I. R ~< 0, x/> 0. From the decomposition 

2 ;~o2 (~Olx~91y;~O2z-~Kq)2z~t,s=(~Olx~Oly;~Olz)t,s'~ls 2z)t,s (5.9) 

We conclude that (5.7)~> 0 from rBM inequalities. 

II. R/>0, ~r Using the same decomposition as in region I, we 
conclude that (5.7)~> 0 from BM inequalities. 

III. R/> 2, tc ~< 1. From the decomposition 

( ~91x~Oly'~ q)2 z -~- t(.~02z) t,s = ( q)lx~Oly; ~92z ~- q)2z) t, s 

+ ( ~ -  1)(~O~x~Oly; ~o~z),,~ (5.10) 

We conclude that (5.7) ~> 0 from vsD-N and BM inequalities. Notice that in 
this case we have the restriction ~1 ~< ~2. At the moment we do not know 
whether (5.7) >~ 0 holds in general in region III, namely for ~1 > ~2. 

Remark. The condition ~1~<c~2 is equivalent to ( a l - a 2 ) +  
42(R - 2)(si - ti) ~< 0 for all i. Sufficient conditions for this to hold are: 

(a) R = 2 ,  al~<a2. 

(b) R<<.2, al<~a2, s~>~t~ for all i (e.g., t~=0). 

(c) R>>.2, al<~a2, si<~t~ for all i (e.g., s~=0). 

Conclusions Regarding (5.7) for Our Case of Main Interest 
K = R/2: 

(a) R = 0, (5.7) ~> 0 from regions I, II. 

(b) R = 2 ,  (5.7)>_-0 from region III if ~t~<e2 (i.e., si<~t~ for all 
sites i). 
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(c) R > 2, a general proof that (5.7) ~> 0 or (5.7) ~< 0 is hopeless from 
counterexample (the one-site model with probability measure 
given by (1.2); computations can be found in Appendix A of 
ref. 1 ). 

Study of (5.8)  for A = {x, y} 

]. R ~< 0, K i> 0. From the decomposition 

we conclude that (5.8)>/0 from rBM inequalities. 

II. R ~> 2, ~c ~> 1. From the decomposition 

((02x~O2y;~O2z_~K~O2z)t,s=(~92x~O2y. 2 2 , ~O,z+ ~o2:),,s + ( ~ -  1)4~o:x~o2,; ~z),,, 

we conclude that (5.8)>~ 0 from vsD-N and BM inequalities. We have the 
restriction ~1 ~< c~2. Three sufficient conditions for c~ 1 ~< ~2 to hold were given 
above [region III of (5.7)3. 

Conclusions Regarding (5.8) for Our Case of Main Interest 
K = R/2: 

(a) R = 0 ,  (5.8)>~0 from region [. 

(b) R >~ 2, (5.8) ~> 0 from region II. 

5.2. R =  oo(/,1 = 0 )  

For this case 

gx((p2,~022) e x p (  2 2  a l  ^2 a2 ) = - ; , , ~ o 2 - T  ~,, - T  ~o ~ (5.I:) 

where here ). denotes 2:. Then 

g~(~o~ + 2t, ~o~ + 2s) = exp - 2~o~ ~o~ --~- ~, ---~- ~2 - (42ts + a~ t + azs) 

(5.12) 

where ~:/2 = a~/2 + 2s2 and ~2 = a2/2 + 2t2. In this case as in the one-com- 
ponent case the effect of the t and s variables is to add space-dependent 
mass terms (2s2) ~o 2 and (2t2) ~0~ to the Hamiltonian. In order to find the 
monotonicity of the moments in the t, s variables, we study the sign of the 
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derivatives of the moments with respect to t (since it is enough to study just 
these cases and by analogy determine the s cases). That is, 

0 
- -  ( 5 . 1 3 )  0t~ ((o~>,, ,= -22((o~; 2 

0 
- -  ~02~>, ,  , ( 5 . 1 4 )  Otz (~P~>"s= --22(pA; 2 

From BM inequalities we know that 

o 

6. SKELETON INEQUALIT IES FOR u4 FUNCTIONS 

Skeleton inequalities for two-component systems present interesting 
differences (as we will see shortly) compared with the one-component 
systems. 

By (4.1) and (4.3) and simplifying the subscripts and superscripts we 
can write 

u~m(1,2,3,4)=F(1, Z13,4)+r(1,312,4)+F(1,412,3) (6.1) 
where 

F(1, 213, 4) = ~ JC~ 
,o: xl ~ x2 (6.2) 

Since jo~, dvo,, and ~e(t, 0) are all nonnegative, the sign of u4 m~ will depend 
on the sign of the brackets, that is, on the monotonicity of the expectation 

A (q)~ >,,o with respect to t. 
In a similar way for the mixed case, we have 

u]122(1, 2, 3, 4) = ~ J~162 
co:  x I ~ x 2 

(6.3) 

The sign of u41122 will depend on the sign of the brackets, that is, on the 
monotonicity of the expectation a (~o2 >,.o with respect to t. 

6.1. For A = {x, y} and Special izing to K = R[2 

1. A (q)t)~.0 is monotonic decreasing in t for R = 0 with no restrictions 
on cq, e2 (hence with no restrictions on al ,  a2). Therefore from (6.2) we 
have 

u4 ml  ~< 0 if R = 0 (al, a2 arbitrary) (6.4) 
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2. (q~) , , 0  is monotonic decreasing in t for R = 2  with the restriction 
~i ~< ~2 (hence with the restriction al ~< a2). Therefore we have 

u41Hl~0 if R = 2 ,  a l ~ a  2 (6.5) 

3. A (~o2)t,0 is monotonic decreasing in t for R~> 2 with the restriction 
~1 ~ ~2 (hence with the restriction al ~ a2). Therefore we have 

I/41122 ~ 0 if R ~> 2, al ~< a2 (6.6) 

6.2. For any M u l t i - I n d e x  A and Special iz ing to K = R / 2  

4. (~0A)t.s is monotonic increasing in t for R =  oo without restric- 
tions on cq, :~2 (hence without restriction on a~, a2). Therefore we have 

u~ ~11 ~> 0 if R = oo (al,  a 2 arbitrary) (6.7) 

5. (q~A),,, is monotonic decreasing in t for R = oo without restriction 
in e~, 0~ 2 (hence without restriction on a~, a2). Therefore we have 

u4122<~0 if R=oQ (a~,a2arbitrary) (6.8) 

We summarize the above result in the following proposition: 

Proposition 6.1. Consider a system with joint probability measure 
given by (1.2), where b = 0 .  Then for all x~, x 2, x3, and x4 in L we have: 

(i) u~111(xl, x2, x3,x4)~<O 
(ii) b/41111(Xl, X2, X3, X4) ~ 0 

(iii) U41122(Xl, X2, X3, X4) ~< 0 
(iv) ~/II11(Xl, X2~, X3, X4) ~ 0 

(V) L/41122(X1, X2, X3, X4)<0 

if R = 0  and a~, a 2 arbitrary 

if R = 2 and a I ~< a 2 

if R/> 2 and al <~ a2 

if R = oo and a~, a2 arbitrary 

if R = oo and a~,a2 arbitrary 

Remarks. 1. (6.4) is just the Lebowitz inequality for one-com- 
ponent models. Moreover, (6.4)-(6.5) is a special case of the Gaussian 
inequality for two-component rotator proved in ref. 12 for al =a2 and 
0 ~< R ~< 6 by different techniques. Note, however, that here (6.5) is proven 
whenever ax ~< a2. 

2. (6.6) and (6.8) are results already known from BM inequalities 
(actually BM and rBM inequalities prove u41122~<0 for all R~>0 and 
u~ ~z2 1> 0 for R ~< 0, respectively). 

3. The regions where we know the monotonicity of A (q~l)t,0 and ( A  ~02 )t,0 intercept only in R = 2 and R = 0. 
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7. CONCLUSIONS 

The proof of the monotonicity of the expectation of the moments of 
the fields in the variable t was a problem that we were unable to solve 
completely. In this matter we reached the following conclusions related to 
the search of first- and second-order skeleton inequalities in ref. 1: 

1. The impossibility of knowing the monotonicity of (cp A)t,o in t for 
2 < R <  ~ will be translated into the impossibility of having first- and 
second-order skeleton inequalities for R ~ (2, ~ ) .  

2. Our inability to prove the monotonicity of (~0~)t,0 and A ('#2),,0 
for B < 2, R # 0 is translated as the inability to prove second-order skeleton 
inequalities. However, we emphasize that we have no counterexample to 

( A  the monotonicity of (~Ola),,o and ~o2 )t,o in this region. Thus, if future 
work should succeed in proving this monotonicity, first- and second-order 
skeleton inequalities for u4 functions would immediately follow. 

3. The impossibility of proving skeleton inequalities of first and 
second order for the case R = c~ was mainly due to the fact that the ran- 
dom walk representation method used in ref. 15 did not work for this case. 
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